Restoring keystone species through biotechnology

Douglass F. Jacobs van Eck Professor of Forest Biology Purdue University West Lafayette, Indiana, USA

Eastern U.S. forest tree species that have been or potentially could be decimated by introduced pests or pathogens:

- American elm (Dutch elm disease)
- American beech (beech bark disease)
- Ash species (Emerald ash borer)
- Eastern & mountain hemlock (Hemlock woolly adelgid)
- Oak spp. (Sudden oak death/gypsy moth)
- Balsam fir (Balsam woolly adelgid)
- Flowering dogwood (dogwood anthracnose)
- Butternut (butternut canker)
- Walnut (Thousand canker disease)
- All Lauraceae (laurel wilt)

- <u>Keystone species</u>: disproportionate impact on ecosystem when compared to its abundance
- Foundation species: primary producers that dominates an ecosystem in abundance and influence
- Loss of such forest tree species: cascading effects on plant and animal communities, nutrient cycling, and carbon storage
- Reintroduction may help to 1) meet FLR targets and 2) restore population community and ecosystem function

The historical American chestnut

Chestnut blight

- Fungus (Cryphonectria parasitica)
- Girdling canker

#1 - Biocontrol with hypovirulence

e.g., Milgroom & Cortsei 2004 Ann. Rev. Phytopath.

& REGENERATION CENTER

#2 - Genetic engineering

• Two different approaches based upon source of genetic information: *Transgenic* or *Cisgenic*

HARDWOOD TREE IMPROVEMENT & REGENERATION CENTER 1. Any genetic material that will confer blight resistance

OxO-gene construct to degrade oxalic oxidase

e.g., Zhang et al. 2013 Transgenic Res.

#2 - Genetic engineering

• Two different approaches based upon source of genetic information: *Transgenic* or *Cisgenic*

American Chinese Japanese European

2. Genes from closely related species

Chinese chestnut, Japanese chestnut

#3 – Classical tree breeding

HARDWOOD TREE IMPROVEMENT & REGENERATION CENTER

9 of 13

10 of 13

Gustafson et al. 2017 *Ecosphere*

Barriers to restoration

- Society: acceptance of GE trees or hybrids as "native species"
- Scale of reintroduction of foundation / keystone species under FLR
 - Production of resistant germplasm
 - Complex silviculture many generations
 - Intensive management
 - Costs

- Many forest tree species have been extirpated or are severely threatened by introduced pests and pathogens
- Reintroduction offers FLR an added opportunity to help meet targets of Bonn Challenge, while simultaneously restoring species
- Enabling insect and disease resistance in forest trees is complicated, but advances in biotechnology have made reintroduction feasible
- Societal and ecological barriers to FLR with threatened species remain – most effective is policy that confines the spread of pests and pathogens

& REGENERATION CENTER

