Assessment of afforestation strategy with respect to hydrological effects in a semi-arid region of NW China

Pengtao Yu Yanhui Wang Wei Xiong
Wei Guan Mingchun Guo Jianli Liu
Apeng Du Lihong Xu

The Chinese Academy of Forestry
Background

1. In China, afforestation in large scale

2. But restoring vegetation is a dilemma
 - Necessary to improve environment
 - Increasing worries, such as:
 Reduce water yield
 No enough water for forests

3. Limited ecological conditions
 - Big variation of precipitation
 - Strong potential of evapotranspiration
 - Water shortage
The location of research site

Diediegou small watershed:

- Liupan Mountain
- The ecotone between the semi-humid and semi-arid region
- On the north slope, semi-arid climate
Water-limited area, the annual precipitation:

- 428mm/yr
- Mainly in the summer (Jul., Aug., Sep.)
- Big variation among years, in growing season:
 2003: 666 mm; 2004:435mm; 2005:390.6mm; 2006: 465mm
The variation of rainfall intensity

Growing season of 2004

<table>
<thead>
<tr>
<th>Scale of rainfall</th>
<th>Rainfall Events</th>
<th>Accumulation of Precipitation</th>
<th>The percentage of growing season precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10 mm</td>
<td>36</td>
<td>135 mm</td>
<td>31%</td>
</tr>
<tr>
<td>10-20 mm</td>
<td>4</td>
<td>70 mm</td>
<td>16%</td>
</tr>
<tr>
<td>20-30 mm</td>
<td>2</td>
<td>48 mm</td>
<td>11%</td>
</tr>
<tr>
<td>> 30 mm</td>
<td>3</td>
<td>172 mm</td>
<td>40%</td>
</tr>
<tr>
<td>sum</td>
<td>45</td>
<td>435 mm</td>
<td>100%</td>
</tr>
</tbody>
</table>
Three research plots

<table>
<thead>
<tr>
<th>Plot</th>
<th>Vegetation</th>
<th>Slope /°</th>
<th>Slope aspect</th>
<th>Slope location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot1</td>
<td>Grassland</td>
<td>30</td>
<td>South west</td>
<td>Middle</td>
</tr>
<tr>
<td>plot2</td>
<td>Larix principi-rupprechtii plantation</td>
<td>29</td>
<td>North west</td>
<td>Bottom</td>
</tr>
<tr>
<td>plot3</td>
<td>Larix principi-rupprechtii plantation</td>
<td>11</td>
<td>North west</td>
<td>Bottom</td>
</tr>
</tbody>
</table>
Location of plots on the slope

North

plot1

plot2

plot3

River
Hydrological Processes:
• Interception
• ET
• Soil water moving
• Runoff
Calibration and Validation of BROOK90

- Running model on **plot scale**
- **Monitor data**: growing season of 2004, 2005 and 2006
- **Measured and simulated soil moisture** to be compared
- **8 soil layers**: 0-10cm, 10-20cm, 20-30cm, 30-40cm, 40-50cm, 50-60cm, 60-70cm, 70-80cm
Plot 1

Soil moisture (v%) measured vs. simulated for 10 cm, 20 cm, and 50 cm depths from 2004 to 2006.
The list of absolute and relative errors

<table>
<thead>
<tr>
<th>Soil layer (cm)</th>
<th>Plot1 (Grassland)</th>
<th>Plot2 (Larch plantation)</th>
<th>Plot3 (Larch plantation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>1.9</td>
<td>8</td>
<td>1.9</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
<td>9</td>
<td>2.3</td>
</tr>
<tr>
<td>30</td>
<td>2.1</td>
<td>11</td>
<td>1.9</td>
</tr>
<tr>
<td>40</td>
<td>2.6</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>0.9</td>
<td>4</td>
<td>2.4</td>
</tr>
<tr>
<td>60</td>
<td>1.8</td>
<td>9</td>
<td>2.7</td>
</tr>
<tr>
<td>70</td>
<td>2.3</td>
<td>12</td>
<td>3.4</td>
</tr>
<tr>
<td>80</td>
<td>1.9</td>
<td>9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

A: absolute error (volume, %); B: Relative error (%)
The water balance component

The water balance under grassland in growing seasons

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>I</th>
<th>T</th>
<th>SE</th>
<th>SRFL</th>
<th>SEEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>435.0</td>
<td>26.1</td>
<td>271.7</td>
<td>35.6</td>
<td>28.0</td>
<td>9.5</td>
</tr>
<tr>
<td>2005</td>
<td>390.6</td>
<td>26.1</td>
<td>261.8</td>
<td>55.8</td>
<td>1.6</td>
<td>3.6</td>
</tr>
<tr>
<td>2006</td>
<td>465.0</td>
<td>28.4</td>
<td>240.9</td>
<td>77.0</td>
<td>1.1</td>
<td>13.2</td>
</tr>
<tr>
<td>Average</td>
<td>430.2</td>
<td>26.9</td>
<td>258.1</td>
<td>56.1</td>
<td>10.2</td>
<td>8.8</td>
</tr>
</tbody>
</table>

- The biggest: transpiration, >60% of precipitation
- The second biggest: soil evaporation, >10% of precipitation
- Interception: stable
- Surface runoff: lowest, big variation depending on rainfall intensity
The change after afforestation

Transpiration increase in growing season

• The increasing value: 61mm for plot2
 111mm for plot3

• It depends the rainfall characters
Soil evaporation decrease

- Soil evaporation reduction: ~50mm
- The reason: the shady of forest canopy
Interception: a little increase

Interception increase: ~10mm
Surface runoff reduce to 1~2 mm

In dry year, it will be lower
Summary of water balance change after afforestation

<table>
<thead>
<tr>
<th></th>
<th>Trend</th>
<th>Change value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpiration</td>
<td>+</td>
<td>61-110mm</td>
</tr>
<tr>
<td>Soil evaporation</td>
<td>-</td>
<td>~50mm</td>
</tr>
<tr>
<td>Interception</td>
<td>+</td>
<td>~10mm</td>
</tr>
<tr>
<td>Surface runoff</td>
<td>-</td>
<td>~8mm</td>
</tr>
</tbody>
</table>

Afforestation:

• More water consumed by transpiration and interception
• Low surface runoff reduce less
Water limitation for transpiration

Plant available water in 0-80cm soil layer:
- Grassland is bigger than larch forest
- Sometime in larch forest PAW is zero
Conclusions

1. The water budget of ecosystems in dry area has a strong character of water-limitation
 - Runoff is the smallest part of water budget with lower than 10mm/yr;
 - Transpiration is the biggest part of water budget with more than 60% of the precipitation of growing season.
2. After afforestation:

- Transpiration strong increase with the value of 61-110 mm per growing season.
- Soil evaporation will decrease about 50 mm.
- The surface runoff reduces to lower than 2mm.
- Thus, more water will be consume by vegetation after afforestation although the water limitation is existed.
Thank you for your attention