INBAR TASK FORCE ON SUSTAINABLE BAMBOO MANAGEMENT

“Addressing SDG 13: Climate Action and SDG 15: Life on Land”

Call for sustainable bamboo management experts’ membership

Bamboo commonly known as “the plant of a thousand uses” is a group of tall arborescent grasses, which has cultural and ecological significance in many countries within Africa, America, and Asia where it provides environmental, social and economic benefits\(^1\). There are over 1,600 species of bamboo in the world classified into three tribes: Arundinarieae (temperate woody bamboos, about 546 species), Bambuseae (tropical woody bamboos, about 812 species), and Olyreae (herbaceous bamboos, about 124 species)\(^2\).

Bamboos are native to all continents except Antarctica and Europe. The distribution of different bamboo species across the tropical and subtropical regions naturally is dependent on certain conditions such as soil type, rainfall, temperature, and altitude\(^3\). Depending on the nature of the rhizome system, bamboo can be broadly classified into sympodial (clump forming) and monopodial (non-clump forming) bamboo. Monopodial rhizomes grow horizontally with very long rhizome necks and each culm of bamboo will be separate from each other. Sympodial bamboo rhizome necks are shorter and bamboo culms grow in a compact clump. Monopodial bamboos are generally found in temperate regions, and sympodial bamboo are generally found in tropical and sub-tropical climatic regimes.

Once the plantation establishes itself (~ 5 years of planting in case of sympodial bamboos), bamboo offers itself for regular or annual harvesting. Bamboo produces new shoots or culms every year and at the same old, old bamboo poles die and deteriorate. Thus, sustainable harvesting

and management becomes critical for the bamboo to enhance its carbon mitigation as well as livelihood, economic and sustenance benefits.

The potential of bamboo for sequestering carbon is enormous. Carbon in bamboo is stored as above ground biomass in bamboo culms, branches and leaves and as below ground biomass in the form of rhizomes and root systems. Carbon content in bamboo is 45 to 50 percent of biomass, which is similar to trees. However, when compared to trees bamboo has a more rapid rate of growth and higher annual re-growth, which makes bamboo a net sink of carbon dioxide. In addition, bamboo holds a higher ratio of below ground biomass (31-43 percent) in comparison to most tree species. Only drawback of bamboo is that the bamboo forests reach maturity and a stable level of biomass within 5-8 years of planting. With recent technological innovation and development of durable bamboo products, carbon can be locked in these products for a whole lifespan of the products.

Considering the availability of natural bamboo and is currently used as a tool for landscape restoration in Africa, Asia and Latin America, it is imperative to develop technical guidelines and mechanisms for sustainable management of bamboo to enhance its climate change, livelihood, economic and environmental benefits.

Bamboo forest has a high carbon storage potential owing to its fast-growing rate and high annual regrowth after harvesting, especially when the harvested culms are transformed into durable products. Thanks to the

INBAR with financial support from the International Fund for Agricultural Development (IFAD), South-South Triangular Cooperation (SSTC) is working to enhance the impact of the Inter – Africa Bamboo Smallholder Farmers Livelihood Development Programme by transferring solutions, knowledge, skills and technologies both within Africa and from China to target African countries. Main expected outcomes of the SSTC include:

i. Enabled bamboo value chain environment with awareness increased, an improved policy framework, and investment promotion in beneficiary countries to alleviate poverty and create jobs.

ii. Enhanced connectivity between bamboo technical experts from beneficiary countries for knowledge transfer and high-quality standards.

Under outcome (ii), INBAR is establishing a new Task Force on Sustainable Bamboo Management (TFSBM) with objective to increase the global body of knowledge to sustainably manage the bamboo resources through development of voluntary guidelines standards. A major output of the TFSBM is to produce voluntary guideline standards (VGS), a multi-stakeholder, consensus developed, cost effective document that will boost sustainable bamboo management of bamboo forest and farms as well as trade.

The primary target beneficiary countries are: Cameroon, Ethiopia, Ghana and Madagascar; and include other INBAR member countries specifically Benin, Burundi, Central African Republic, Eritrea, Kenya, Liberia, Malawi, Mozambique, Nigeria, Rwanda, Senegal, Sierra Leone, Tanzania, Togo and Uganda.

INBAR is now recruiting experts on sustainable bamboo management; this is to invite all experts from around the world interested to join a global network of sustainable bamboo management to join the TFSBM. African country experts (specified above), and females are particularly encouraged to apply to join the TFSBM. If you are interested, please click on the link, complete and submit the form: https://form.jotform.com/201054175254043

FYI, while experts are engaged purely on a voluntary basis - they will be able to be accredited as task force experts on business cards and e-mail signatures. They can use this for their CV’s (they cannot commit INBAR to any course of action though). It will also give them access to other people working on sustainable bamboo management throughout the world.

For any inquiry, please refer to refer to the contact below:

INBAR Technical Advisory Committee (TAC)
Door 63, Road n°1860, Behind Bastos Factory, Yaoundé 1st District, PO BOX 17056, Yaoundé (Cameroon)
Tel: +237 680 12 46 46 Fax: +237 222 21 73 05
Email: rkaam@inbar.int http://www.inbar.int